RacGap50C negatively regulates wingless pathway activity during Drosophila embryonic development.

نویسندگان

  • Whitney M Jones
  • Amy Bejsovec
چکیده

The Wingless (Wg)/Wnt signal transduction pathway directs a variety of cell fate decisions in developing animal embryos. Despite the identification of many Wg pathway components to date, it is still not clear how these elements work together to generate cellular identities. In the ventral epidermis of Drosophila embryos, Wg specifies cells to secrete a characteristic pattern of denticles and naked cuticle that decorate the larval cuticle at the end of embryonic development. We have used the Drosophila ventral epidermis as our assay system in a series of genetic screens to identify new components involved in Wg signaling. Two mutant lines that modify wg-mediated epidermal patterning represent the first loss-of-function mutations in the RacGap50C gene. These mutations on their own cause increased stabilization of Armadillo and cuticle pattern disruptions that include replacement of ventral denticles with naked cuticle, which suggests that the mutant embryos suffer from ectopic Wg pathway activation. In addition, RacGap50C mutations interact genetically with naked cuticle and Axin, known negative regulators of the Wg pathway. These phenotypes suggest that the RacGap50C gene product participates in the negative regulation of Wg pathway activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane bound axin is sufficient for Wingless signaling in Drosophila embryos.

The Wingless signaling pathway controls various developmental processes in both vertebrates and invertebrates. Here I probe the requirement for nuclear localization of APC2 and Axin in the Wg signal transduction pathway during embryonic development of Drosophila melanogaster. I find that nuclear localization of APC2 appears to be required, but Axin can block signaling when tethered to the membr...

متن کامل

Antagonist activity of DWnt-4 and wingless in the Drosophila embryonic ventral ectoderm and in heterologous Xenopus assays

Wnt genes encode secreted signalling molecules involved in a number of basic developmental processes. In Drosophila, wingless and DWnt-4 are two physically clustered Wnt genes, which are transcribed in overlapping patterns during embryogenesis and, in several instances, are controlled by the same regulatory molecules. To address the question of the functional relationship of wingless and DWnt-4...

متن کامل

The HMG-box transcription factor SoxNeuro acts with Tcf to control Wg/Wnt signaling activity.

Wnt signaling specifies cell fates in many tissues during vertebrate and invertebrate embryogenesis. To understand better how Wnt signaling is regulated during development, we have performed genetic screens to isolate mutations that suppress or enhance mutations in the fly Wnt homolog, wingless (wg). We find that loss-of-function mutations in the neural determinant SoxNeuro (also known as Sox-n...

متن کامل

Pebble/ECT2 RhoGEF negatively regulates the Wingless/Wnt signaling pathway.

Wingless (Wg)/Wnt signaling is essential for patterning invertebrate and vertebrate embryos, and inappropriate Wnt activity is associated with a variety of human cancers. Despite intensive study, Wnt pathway mechanisms are not fully understood. We have discovered a new mechanism for regulating the Wnt pathway: activity of a Rho guanine nucleotide exchange factor (GEF) encoded by pebble (pbl) in...

متن کامل

Splits ends is a tissue/promoter specific regulator of Wingless signaling.

Wingless directs many developmental processes in Drosophila by regulating expression of specific target genes through a conserved signaling pathway. Although many nuclear factors have been implicated in mediating Wingless-induced transcription, the mechanism of how Wingless regulates different targets in different tissues remains poorly understood. We report here that the split ends gene is req...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 169 4  شماره 

صفحات  -

تاریخ انتشار 2005